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ON THE NOTION OF A HOLLOW BODY FILLED WITH VISCOUS 
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A POTENTIAL BODY-FORCE FIELD 
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(Received %&?I% 2, 1968) 0 

We consider the motion of a hollow solid body whose cavity is completely filled with a 
viscous liquid, assuming that the product of the Reynolds and Strouhal characteristic num- 
bers for the flow of the viscous fluid in the cavity is small. We then show that the prob- 
lem can be handled by methods used to investigate systems with a small parameter 
accompanying the higher derivatives and develop an algorithm for constructing an asymp- 
totic expansion of the corresponding simultaneous system of Navier-Stokes and ordinary 



On the motion of a hollow body filled with viscous liquid 419 

differential equations. Chernous’ko [l] constructed a system of ordinary differential equa- 

tions which approximates the motion of the system in question outside the initial time 

integral, when the flow in the cavity is essentially unsteady. Our approach enables us to 

construct a solution without recourse to the additional conditions imposed by Chernous’ko 
on the derivatives of the angular velocities of the body, to evaluate the time-dependent 

“thickness” of the boundary layer, and to write out initial conditions for the system of 

equations proposed by Chernous’ko. 

1. The ba#lc equation@ of the problem, The motion of a hollow body 
completely filled with viscous liquid about its center of mass in a potential body-force 

field is described by the following system of equations in the coordinate system rigidly 
attached to the solid body [l]: 

1 rau 
,~+(“v)u+Jgxr+20xu 

;I_ 1 -Au+Vq=O, divu=O 

J$+$+ox[Jo+K]-M=O 

K=pl (rxu)dm, 
D 

q=$[$+U-l/,(mxr)a 
I 

- uI,=O, u (r, 0) = u” (r), 0 (0) = 0’ 

Here u is the relative velocity of an arbitrary point of the system ; 61 is the absolute 
angular velocity of the body ; r is the radius vector of the given point in the attached 

coordinate system ; J = J, + J1, where J, is the inertia tensor of the body and J1 
is the inertia tensor of liquid “solidified” in the cavity ; v is the kinematic viscosity of 
the liquid ; p is the density of the liquid ; p is the pressure in the liquid ; u is the poten- 
tial of the external body forces ; M is the moment of external forces ; D is the cavity 
occupied by the liquid ; I’ is the boundary of this cavity. 

Investigation of Eqs. (1.1) consists in the simultaneous consideration of the boundary 
value problem for the general system of Navier-Stokes equations and the Cauchy prob- 
lem for a system of ordinary differential equations. 

In [l] it is shown that unsteady boundary value problems for the system of Navier- 

Stokes equations are solvablp in the generalized sense at all instants provided the exter- 
nal forces are potential and the Reynolds number at the initial instant is small. 

In solving the Cauchy problem for the above regular 133 systems of ordinary differen- 
tial equations we must bear in mind the continuous dependence of the solutions on vari- 

ations of the initial data and of the right sides of the equations. The continuous depend- 

ence of the solutions u (r, t, 1 / v) on the initial conditions u (r, 0) and on the para- 
meter 1 / v also holds over a finite time interval for the regular system of Navier-Stokes 
equations (e.g. see p]). 

Let ro be the characteristic time of motion of the body relative to the center of mass 
and let Lo be the characteristic linear size of the domain D. We introduce the parameter 
jJ which is equal to the product of the Reynolds and Strouhal numbers for the flow of the 
viscous liquid in the cavity D , p = v-IT,-‘L,’ (1.2) 

Let us set Lo = 1, To = 1. Hence, /A = 1 / V. We assume from now on that the 
parameter lo is small. In other words, we propose to construct an approximate solution 
of system (1.1). rejecting quantities of a certain order of smallness relative to p. 
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2. Constructing the asymptotic expannion of the solution. Let 
us construct the asymptotic for,m of the solution of system (1.1) in the small parameter 

/J according to the procedure proposed in [3]. 

We formally construct the solution of system (1.1) in the form of series in powers of p, 

up. t. p) = d(r, t> -t pd(r, 0 + - . . 

q (r! t. p) = d(r, t) + w:(r, Q+..- 

0 (t, p) = o,‘(t) + p4 (0 + * * * (2.1) 

The initial conditions for the corresponding systems of equations which we obtain on 
substituting these series into system (1.1) will be specified below in a certain special 
way. For the present we merely note that determination of the functions Ut (r, t),(,k = 
= O,l,. . .) requires the solution of steady boundary value problems. This means that 
initial values must be specified for the functions 6~; (t) only. 

Now let us formally construct the solution of system (1.1) (having first made the sub- 
stitution of variables T = t / ~1) in the form of series, 

u(r, z, PI = ui (r, r) + &(r, r) +... 

Q (r, r, ~2) = 4: (f, z) + f+Z (f, z) + . . . 

0 (z, PL) = 0: (r) + Pd PI (2.2) 

The initial conditions for the corresponding systems of equations in variations can be 
written as follows: 

4 (r, 0) = u”(r), ui (r, 0) = 0, 00” (0) = o”, oi (0) = 0 (k> 0) (2.3) 

Next we expand all the coefficients of series (2.1) in powers of t , 

4 @, t) = & (r) + tu& (r) + . . . 

qE (r, t) = qh (r) -I- tqil (r) -t_ . . . P-4) 
wfi (t) ‘= Wfr” + to#& + . . . 

Let us substitute series (2.4) into (2. l), make the substitution Z = t / p in the result- 

ing formal expansions, and regroup the terms of these expansions in such a way as to 

obtain series in powers of p, 

u (r, z, p)= u&(r) +v [uh(r)+~d~Wl +--a9 

4 (r, f, P) = crh (r) + F [q:,(r) + VI& WI + * * - (2.5) 

0 (r, cl) = e& + P [a:, t ~o;;l + * * ’ 

Let us denote the coefficients of the kth power of p in the resulting series (2.5) by 

U: (r, r), qi (r, -c), 0; (T) ,respectively. Hence, 

u(r,7,~)=u~(r,7)+~u31(r,~)+... 

q (r, z, EL) = 4; (r, z) + cLq: (r, T) + - - * (2.6) 

o(T,C1)==O~(Z)+~LW:(T)+... 

Finally, we construct the following expressions : 

G,(u) = (4: + (u>“n - (d, G, (4) = (di + (& - (q)“n 

G, (a) = (o)f, + (o)t - (o); (2.7) 
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Here (.); (i = 1, 2, 3) p re resents the partial sums of series (2. l), (2.2), (2.6). 
Expressions (2.7) are the partial sums of the asymptotic expansions of the solution of 
problem (1.1). This can be formulated more precisely as follows. 

The inequalities 

Iluk t, PL)-G(U)/I<~PLn+~, lo(4 P)-G&)I<aPn~~ (2.8) 

are valid for the solution of system (1.1) for sufficiently small p and t E IO, Tl. Here 
a is a constant which does not depend on t and p and 11 . (1 is the norm in L, (0). 

Let us prove this statement. 
We begin by investigating the so-called “adjoint” system of equations (the rapid-mo- 

tion system) relative to the initial point. We construct this system by setting first T = 

= t / p and then p = 0 in (1.1). This yields 

6$-+-$-xr-Au+Cq, divu=O 

J$+g=O, Ii = p (rxu)dm 
s 
D 

(2.9) 

u/r = 0, u (r, 0) = u’(r), 0 (0) = w” 

Let us consider the behavior of the solutions of linear unsteady problem (2.9) as 
7 + cy:. From the last equation of system (2.9) we infer that 

0 (z) = o” + pJ-’ 
5 

[r x(u” -u)] dm (2.10) 

We note, moreover, that a closed subsystem of partial differential equations for the 

variables u (r, z), q (r, Z) can be isolated from system (2.9), 

$-pJ-ls crX$)dmXr-Au-j-Vq=O, divu=O (2.11) 
1) 

u Ir = 0, u (r, 0) = u”(r) 

Let us set 
u (r, z) = w(r) ehr, q (r, z) = s (r) eL5 (2.12) 

in system (8.11). 
This yields 

Aw -Vs=h w- 
C 

pJ”\ (rXw)dmXr!, 
h 

div w = 0, w I,_, = 0 (2.13) 

Let us multiply the first equation of system (2.13) by W (the bar denotes the complex 
conjugate) and integrate over the domain D, bearing in mind the fact that 

s 
FvC,wdm = - s 1 rot w I2 dm, s iVVsdm = 0 

D D) D) 

i 5 [pJ_l 5 (rXw)dmXr]dm=pJ-‘1 (rXw)dm\ (rXiG)dm 

(2.14) 

D b 

This yields 

-i I rot w 1” dm = h [s 1 w I2 dm - 1 (r X W) dmpJ_l i 
D D D 

(r X w)dm] (2.15) 

Let us show that 
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S (rXiF)dmpJplS (rxw)dm>O (2.16) 
D 

for w# 0. 

F(w) = i Iwj2dm- 
D 

In fact 

F(w) = 5 [F- pJ-$ (rXw)drnXr)]~- pJ-‘s, (rx w)dm x r]dm+ 

+% (rxw)dmpJ+S (rxw)dm-_SI [pJ-‘s (rXw)dmXr]X 
D D 

But 

x [PJ_‘S ( rxw)dmxr dm 1 
$ [pJ_li (~xG) drnzr][pJM1i (rXw) dmxr]dm= 

(2.17) 

= [pJel i (rx W) dm] p-‘J1 [pP 1 (r X w) dm] = 1 (r x w) dmpJ’l X 
D D 

X 5 (rxW)dm -[pJ-ls D (rX W) dm] p-‘Jo [pJ-‘i (r x w) dm] (2.48) 

so that for w # 0 we have 

F(W) = 1 [Y-pJ-ls (rXw)dmxr][w-ppJ-‘S (rXw)dmxr]dm+ 
D D D 

+ [p~-l ‘j (r x g) dm] p_lJ,, [pJ-l 5 (r x w) dm] > 0 (2.19) 
D D 

In the case of a smooth boundary I? of the domain D we have [4] 

L jrotw12dm>ci (w(2dm=cUw(12 

where the constant c depends on the domain D only. Hence, 

(2.20) 

IWS I - II w 11% rot w I2 dm ,, f ,,2 > c )I wu” 
_ c > (-J 

D 

(2.21) 

The author of [5] proves an existence theorem and investigates the properties of the 

spectrum of the solution of system (2.11). It should be noted, however, that in proving 
a relation of the type (2.16) he imposes a certain additional condition on the moments 

of inertia of the body. 
Recalling relations (2.16) and (2.21). we infer from the results of [S] that for any ini- 

tial distribution of the velocities u” (r, 0) E W21 (e. g. see p2]) we have 

\\\u(r, %)I]-+O, llu(r, r)ll<ae-a+ (IhI>a>c>O) (2.22) 
asr+oo. 

Here the norm is to be interpreted as the norm in L, (0). As ‘c +- 00 we have 

o(z= oo)=~~,+pJ-~ S (r x u”) dm (2.23) 
D 

Let us formulate several lemmas, as in [3]. CA quantity satisfying the inequality 
11 - 11 < UE will henceforth be denoted by [[El].) 

L e m m a 2.1. The relations 
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are valid. 
Let us consider the systems in variations which result on substitution of series (2.2) 

into system (1.1) into which the “time” z has been introduced. 

The zeroth-approximation system coincides with (2.9), so that 

d (I, T) = iie-a+ll = IIlll, a; (a) = 11111 (2.25) 

Let us write out the first-approximation system 

da xr-Auf+ Vq: = - [(u;V>u;+ 20;4xu3, divu; = 0 

da; dK; 
J- 

dz +- dt 
- = -[o~x(Jo;+ K:)-Mc,], K;=p (rxd)dm (2.26) 

q Ir = 0, u;(r,o)=o, w;(o)=0 

The eigenvalues of the homogeneous boundary value problem corresponding to system 
(2.26) are all real and negative (I h 1 > a > c > 0) ;it is clear, moreover, that the 
perturbations do not exceed some constant. Hence, 

ui(r, z) = Il~ll, &O) = [if11 (2.27) 

The required result for the bth approximation system is readily obtainable by math- 
ematical induction. 

Next, we note that the definitions of the functions t$ (r, z), e$ (7) themselves 

imp1Y that u; (r, z) = [[z”]], ~0; (z) = [[+I] (k = 1, 2, 3, . . .) (2.28) 
Let us introduce the functions 

% @) = ui +t %) - “E @, r), =k (qf = q; (r* ‘t’) - 4; (r, 2) (2.29) 

nk (a) = 0; (f) - w; (r) (k = 0, 1, 2, . . .) 

L e mm a 2.2. If the initial conditions for the systems of equations in variations 
obtained on substituting series (2.1) into system (1.1) are specified in the way described 

below, then Ilk@) = [[t-“]], nk(“) = I[e-a’l1 (4>O) (2.30) 
Let us consider the systems of equations for Sk (U). nk (Q), Sk (0) obtainable by 

sub~actin~ from the equations for ug (r, z), qc (r, T), m$ (T) the analogous equations 
for ui (r, T), qi (r, T), 63: (z). The system of equations for ‘no (U), no (q), no (0) 
is of the same form as system(2.2),~0 that for any initial conditions we have 

n0 (4 = IIeYl 
Furthermore, 

(2.31) 

no (a) = -J-Ino (K) + no (0) 1~ + J-h (K) Lo (2.32) 

n,(K) = p 5 (rx x0 (u)) dm = [[e+]] 
D 

Let us stipulate that 
no (0) ]r=o = - J-“no (K) IrcO 

Under this condition we have the relation 

no (0) = [ Ie-ar II 

Let us consider condition (2.33). By definition, 

(2.33) 

(2.34) 
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570 (0) ITGO = 4 (0) - 4 (O), ZO (K) IT=f~ = P % [r x (ui (r, 0) - 4 (r, 0)] dm 

But 

““0 (0) = 6P, ui (r, 0) = $(r), co; (0) = oio = to; (Cl), ui (r, 0) = uLo (r) (2.35) 

For Uloo (r) we have the system of equations 

A& - Vq;,, div u& = 0, u;, Ir = 0 

Hence, uroO = 0 and condition (2.33) is equivalent to the relation 

(2.36) 

@; (0) = O& = ~0~0 + pJ+ S (r x u” (r)) drrl 
D 

(2.37) 

Now let us write out the system of equations for rr, (u), n, (q), nl (0) 

3% (u) 
-+ at ‘9 xr-Aan,(a)+Vnl(q)= 

div zE, (u) = 0, nl (u) Ir = 0, n1 (K) = p s (r xnl (u)) dm (2.38) 
D 

J da1 (0) drill (K) 
-+- dz dz =-W:, x (K:f J&N + b3, x (Ki + J&l 

The eigenvalues of the homogeneous boundary value problem corresponding to system 

(2.38) are all real and negative ( 1 h 1 > a > c > 0), and the perturbations clearly do 
not exceed the quantity ~e?~ in norm. Hence, 

n&r) = [[e-“Vl (2.39) 
Let us stipulate that 

nr (0) IT=,, = - J-‘nr (K) I:zO $ J-l [@dr (2.40) 
Here 0 

@=co:x(K;+ Jo:)-mix (K;+J&) 
In this case 

nr(o) = - J-%-cl (I~) + .l-l r cDdz (2.41) 
- 

But 00 

Q, = [ [e6’]], s ’ @,dz = [[e-“‘I], nl(K) = [[emZS]] 

Hence, nl(o) = [[eWcli]], and:since J$ (K) = [[e-aT]], it follows that 

J%(o) = []e-*tl] (2.9 
Let us consider condition (2.40). By definition, 

fll(@) ITEO = “: (0) - “; (O), nt (W lsCO = P 1 Ir x (uf (r, 0) - U; (r, O))ldm 
D 

But 
Co; (0) = 0, u”, (r, 0) = 0, 0; (0) = mio = w: (0), u; (r, U) = uto (r) 

and we have the following system of equations for finding u& (r) : (2.43) 

Auio - Vq:,, - co& x r =- 0, divul = 0 

uio Ir = 0, m& = J-’ [MO - co& x ;e,, (2.44) 

Hence, condition (2.40) is one which is imposed on the initial data allo in the system 
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obtained by substititing series (2.1) into system (1.1). 

Imposing similar requirements on ark (0) for z=O(k = 2,3,. . .), we can use Lemma 
2.1 to estimate the right sides and apply induction to obtain the required estimate for 
the k,th approximation system. 

We note here that 

nk (O) ]r=O = - @:“, ZJi (u) IT=O = -u;,,(r) (k=2, 3, . ..) 

and that the & (r) can be found by solving the steady boundary value problems. 
The same procedure can be used to verify the following relations which are a conse- 

quence of Lemma 2.1: 

$nk (u) = ][e-aT]]9 +nk (0) = [[ema’]] (a>(9 (2.45) 

Lemma 2.3. Intheinterval o<t< - bp In p, where b is some sufficiently 
large but fixed constant, we have 

G,(t+-o)~+,= [tpn+lll, & 1% (4 - <u>:+,l = H$‘ll 

G, (0) - @):+I = [lp”+ll 1, $Wn (0) - (4:+11 = IW’II (2.46) 

The proof of Lemma 2.3 is an exact repetition of the proof of the analogous lemma 

in [3]. 
Let us break up the segment 0 < t \( T into two parts : the segment 0 < t < to = 

= - bp In p and the segment to < t < T, where b is some sufficiently large con- 
stant which remains fixed as p, -to . 

Making use of Lemmas 2.2 and 2.3, we can show 133 the substitution of expressions 
(2.7) instead of the solutions into the first and the third equations of system (1.1) gives 
rise to the discrepancies [ [p”+‘] 1 and [ [p”+l]] + [ [p” exp (- at / p)] 1, respectively, 
in the segment [O, t”] , and to the discrepencies [ [p*+l]] in the segment [t”, T] . 

We note that by virtue of Lemma 2.2. in the segment [t”, T] we can take (u)f, (0): 

instead of G, (u), G, (co) , respectively, in expressions (2.8). Let us introduce the 
functions 

V,,, = u (r, t, t’] - G (u), %+, = 0 (t, IL) - G, (0) 

&+r = Q (r, t, P) - G, (d + CL (Qn+lx r)(Gn (0) X r) 
(2.47) 

These functions satisfy the following system of equations: 

p[G v,,+~ + -$ Sz,,, x r] - AV,+l+ V&+1 + 

+ p [ (V,+,V) vn,, + 29n+1x vn+11 = fl 

div V,+, = o, vn+lIr = 0, %+I = P \ ~ (rx V,+I) dm (2.48) 

Here 

J&L1 i- $ &+I + S-J n+lx IJQn+, + %+,I = fs 

fl= [[p+l]], fl = [tp*+l]l + [[p”ew(---tPW for o\<tGp 

fI= [[pn+lll, f._= [[p+l]] for P<t<T (2.49) 
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Let us consider the segment [O, t”]. At the initial point Vn+l. = 0, Q,,,, = 0, so 
that we can linearize system (2.48) in the neighborhood of the point t = 0 , 

P [; Vn+1 + $9,+,xr]--AV,,, +VR,+l= fl, divV,+l= 0 

J&8 n+,. +$ K,,+l= fa, K~+I= ~5 (rXVn+ddm (2.50) 
D 

vn+, Ir = 0, Vn+1 (r, 0) = 0, %,I (0) = 0 

As we have already shown, the eigenvalues of the boundary value problem correspond- 
ing to system (2.50) are negative (I h 1 > u / p > c / p > 0). Hence, 

L+r (r, t, c’) = 5 exp ( -+---)~-l)t[$m~~ = tw+lll (2.51) 

and,since 
0 

t 
JQn.1 + IL+, = s {W+Yl + [[~“exp(--~p-l)ll)~~ = [W+1l1 (2.52) 

0 
it follows that 

%,I(& PI = [w+lll (2.53) 
By choosing Jo sufficiently small, we can ensure the linearizability of system (2.48) 

over the entire segment [0, t"]. We note that 

Vn+t It=!” = [[l.rn+l]], %+I It=to = t[Pn+lll 
Hence, choosing our p sufficiently small, we find that 

Vn+r(r, t, p) = [[pn+r]], !&+rtt, CL) = tW+lli on It”, Tl (2.54) 

as on IO, PI. 
Relations (2.54). which are equivalent to inequalities (2.8). are therefore valid for 

t E [O, 2'1 when I_L is sufficiently small. 

3. Using the above algorithm to construct an asymptotic form 
of the 8olutlon of problem (1. 1) accurate to within term8 of 
order p2 outBide the boundary layer with rc8pect to t . Thesystem 
of equations for determining the zeroth approximation of the solution of problem (1.1) 

outside the time interval [0, --bp lnp] is of the form 

(3.1) 

0: (0) = coo+ pJ-1 \ (r x uO) dm 
iI 

Assuming that the solution of system (3.1) has been found, 

0; (t) = 6 (t) 

we can write out the system for determining the first approximation, 

rm (t) 
Auk-Vvgi--, Xr=o, div ui = 0 

czo; dK: 
J ~+@(t)XJ+JCf(t)X6’;+d,+6(t)X’+() 

(3.2) 

(3.3) 
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K:=p (r Xu:)dm, 
s 

u$=O (cont. ) 

D 
co 

ol f”) = - J-l ‘P 1 (r X u: (r, 0)) dm + 1 10: x (Jo: + Ki) - 0; (0) x Jo;] dz 
LI 0 I 

The values of 00” (r), Ki (T) can be determined from the system of equations 

!5+ 
do; 

xxr-Au:+Vqt=O, divut=O 

do; dK; 

J dr + dt - -=o, Ki=p (r x u$dm 
s 

(3.4) 
D 

qr=o. ui(r, 0)=11”(r), 0; (0) = o” 

The solution of the steady boundary value problem in system (3.3) was constructed by 
Chernous’ko [l], whose results imply that 

de(t) 
P s [rXU:(r, t)]dm=--pPT 

D 

where P is a symmetric tensor dependent on the domain D only. 

We therefore have the following system of equations for the function 0: (r) 

do; 
J~+~(t)xJ+JJ6(t)xo;-p ~~+e(t)~~~ C 

N(t) de(t) =. 1 03 
co; (0) = J-1 pi c@(t) dt 

t=o - J+O)x [$+)-a; (O)]dt s 
0 

(3.5) 

(3.6) 

The sum ori (t) + pai (t) represents the first two terms of the Maclaurin expansion of 
the solution of system (1.1) outside the boundary layer. It coincides with the solution of 
system (5.4) of [l] to within terms of the order p2 if the initial conditions for the latter 

system are given in the form e$, (0) + pa: (0). 
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